Newton Tony CE VC Primary School	
Calculation Policy	
Policy agreed	September 2023
Policy review	September 2024 or as required

EYFS			
Number - addition and subtraction		Number - multiplication and division	
add two single digit numbers aggregation Counters on plates $1,2,3,4$, 5, 6. Bead strings or bead bars can be used to illustrate addition including bridging ten by counting on 2 then 3. $5+3=8$ 12345678 $5 \quad 678$ Count on to find the answer augmentation Practically with objects, fingers etc. $5+2$ "Put 5 in your head, 6, 7." Dice... $4+3=7$ On a prepared number line (start with the bigger number)... $2+4=6$	subtract two single digit numbers reduction Counters on plates 6 take away 1 leaves $1,2,3,4,5 .$ Cross out drawn objects to represent what has been taken away: 3 take away 2 is 1 Start with 3 ... 2, 1. Count on or back to find the answer Practically, for example: Group objects on a table then cover some to visualize the calculation: 2 less than 4 is 2 Start with 2... 3, 4. Coins I had 10 pennies. I spent 4 pence. How much do I have left? Start with 10... 9, 8, 7, 6 .	solve problems including doubling Practically double a group of objects to find double of a number by combining then counting the two groups: Double 4 is 8 . is 10	solve problems including halving and sharing Sharing objects One for you. One for me... Is it fair? How many do we each have? 15 shared between 5 is 3 . Grouping objects Put groups of objects on plates. How many groups of 4 are there in 12 stars?
understand and use vocabulary for addition add, more, and, make, sum, total, altogether, score, double, one more, two more, ten more... how many more to make...? how many more is... than....? is the same as	understand and use vocabulary for subtraction take (away), leave, how many are left/left over? how many have gone? one less, two less... ten less... how many fewer is... than...? difference between is the same as	understand and use vocabulary for multiplication count on (from, to), count back (from, to), count in ones, twos... tens... is the same as	understand and use vocabulary for division half, halve, count out, share out, left, left over is the same as

	Number lines (numbered and unnumbered, prepared and child constructed)	Progress onto using known facts and counting (in 1s, 2s, $5 s$ and 10s) to double more efficiently.	Progress onto using known facts and counting (in 1s, 2s, 5s and 10s) to halve more efficiently. Half of 8 is 4
	$\begin{array}{lllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$ Use practical equipment (such as numicon or cuisenaire) to identify the 'difference': 4 \square 7 \square 'The difference between 7 and 4 is 3 ' or 'Seven is 3 more than four'.	a 10 and 10	
read, write and interpret mathematical statements involving addition (+) and equals (=) signs It is important to that children have a clear understanding of the concept of equality, before using the ' $=$ ' sign. Calculations should be on either side of the ' $=$ ' to that children don't misunderstand ' $=$ ' as to mean 'the answer'. $\begin{aligned} & 15+2=17 \\ & 15=3+12 \end{aligned}$	read, write and interpret mathematical statements involving and subtraction (-) equals (=) signs It is important to that children have a clear understanding of the concept of equality, before using the ' $=$ ' sign. Calculations should be on either side of the ' $=$ ' to that children don't misunderstand ' $=$ ' as to mean 'the answer'. $\begin{aligned} & 15-2=13 \\ & 15=18-3 \end{aligned}$	make connections between arrays and number patterns Looking at columns Looking at rows $2+2+2$ $3+3$ 3 groups of 2 2 groups of 3 Arrays and repeated addition or $2+2+2+2$	make connections between arrays and number patterns There are 4 groups of 3 in 12 . 12 shared between 4 is 3 .
solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as 7 $=[]+4$ To support this, when solving calculations, missing numbers should be placed in all possible places: $\begin{array}{ll} 3+4=\square & \square=4+3 \\ 3+\square=7 & 7=\square+4 \\ 4+\square=7 & 7=3+\square \\ \square+\nabla=7 & 7=\square+\nabla \end{array}$ Use all the models and images mentioned above. Discuss which is most effective and why.	solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as 7 = []-9 To support this, when solving calculations, missing numbers should be placed in all possible places: $\begin{array}{cc} 16-9=\square & \square=16-9 \\ 16-\square=7 & 7=\square-9 \\ & \square-9=7 \\ \square-\nabla=7 & 7=\square-\nabla \end{array} \quad 7=16-\square$ Use all the models and images mentioned above. Discuss which is most effective and why.	solve one-step problems involving multiplication, by calculating the answer using concrete objects, pictorial representations and arrays with the support Use all the models and images mentioned above. Discuss which is most effective and why.	solve one-step problems involving division, by calculating the answer using concrete objects, pictorial representations and arrays with the support Use all the models and images mentioned above. Discuss which is most effective and why.
understand and use vocabulary for addition, e.g. put together, add, altogether, total and more than	understand and use vocabulary for addition and subtraction, e.g. take away, distance between, difference between and less than	use a variety of language to describe multiplication count on (from, to), count back (from, to), count in ones, twos, threes, fours, fives... count in tens,	use a variety of language to describe division Array, row, column, halve, share, share equally, one each, two each, three each... group in pairs, threes... tens, equal groups of

+, add, more, plus, make, total, altogether, score

 double, near double, one more, two more... ten more= equals, sign, is the same as

How many more to make...? How many more is.. than...? How much more is...? Repetition of facts with different vocabulary:
"What is 2 add 5?" "What is 2 more than 5?" What is 2 plus 5 ?" What is the total of 2 and 5?" etc

- subtract, take (away), minus, leave, how many are left/left over? how many have gone? one less, two less, ten less... how many fewer is... than...? how much less is...? difference between, half, halve, counting up/back...
= equals, sign, is the same as
Repetition of facts with different vocabulary "What is 7 take away 3?" "What is 3 less than 7?"
"What is 7 subtract 3 ?"
"What is the difference between 3 and 7?" etc
lots of, groups of, x, times, multiply, multiplied by, multiple of, once, twice, three times... ten times... times as (big, long, wide... and so on), repeated addition, array, row, column, double halve
= equals, sign, is the same as
\div divide, divided by, divided into, left, left over
= equals, sign, is the same as

Year 2

Number - addition and subtraction

Number - multiplication and division

recall and use addition and subtraction facts to 20
fluently, and derive and use related facts up to 100
Play games, chant, test etc to increase speed of recalling facts to 20.
Make models and images to display facts.
Investigate related facts to 100 and repeat above.

add numbers using concrete objects, pictoria

representations, and mentally, including

- a two-digit number and ones or tens

號 20
Play game derive and use related facts up to 100
lay games, chant, test etc to increase speed of recalling facts to 20.
Make models and images to display facts.
Investigate related facts to 100 and repeat above
subtract numbers using concrete objects, pictorial representations, and mentally, including

- a two-digit number and ones or tens
recall and use multiplication facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers
Play games, chant, test etc to increase speed of recalling facts to 20.
Make models and images to display facts.
Investigate related facts to 100 and repeat above connect the 10 multiplication table to place value
recall and use division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers
Play games, chant, test etc to increase speed of recalling facts to 20
Make models and images to display facts.
Investigate related facts to 100 and repeat above. connect the 10 multiplication table to place value

H	T	U	
	\mid	1	
	$\\|$	0	
	$\\|$	0	
	$\\| \mid l$	3	
		0	
	$\\|$	4	
	0		

- adding three one-digit numbers

Use knowledge of adding, for example number bonds first or largest numbers first.

$$
\begin{aligned}
& \text { first or largest numbers first. } \\
& \qquad \begin{aligned}
3+9+7 & =(3+7)+9 \\
& =10+9
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& 19 \\
& =19 \\
& \hline
\end{aligned}
$$

different order to check addition (for example, $5+2+1$
$=1+5+2=1+2+5$) - establishing commutativity and associativity of addition
See models and images.
recognise and use the inverse relationship between addition and subtraction and use this to check calculations

See models and images.

Counting back$63-20 \quad$ "Put 63 in your head, $53,43$. ,		
Use unprepared numbered lines to subtract by counting backin units:	Hundred Square	
$$	43-30	

- two two-digit numbers

relate multiplication to arrays and to re
using a range of materials and contexts
Practically combine groups of objects ($2 s, 5$ s and 10s) and verbalise (then record) what has been found out: There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there? 2 add 2 add 2 equals 6

Mum washed 5 pairs of socks, how many socks did she get out of the washing machine? $2+2+2+2+2=10$

Use arrays for repeated addition and relate this to the \times calculation
(Use counters or objects as well as visua
representations to support understanding)
$5+5+5=15 \quad 00000 \quad 3+3+3+3+3=15$
$5 \times 3=15 \quad 3 \times 5=15$
Use a number line for repeated addition:
 continuous quantities to arrays and to repeated subtraction using a range of materials and contexts
Initially, pupils to practically 'share' and 'group' using practical equipment and pictorial representation. Move on to using arrays to identify groups, use physica counters before pictorial representations:

How many groups of 3 are in 15?

Grouping using a number line:
There are 30 children in the class, how many groups of 5 can we get into?

Use counters to support pupils understanding:

use commutativity and inverse relations to develop multiplicative reasoning (for example, $4 \times 5=20$ and $20 \div 5=4$)
Arrays - related facts
$3 \times 5=15$
$5 \times 3=15$

record addition and subtraction in columns

Use partitioned column method
Solve calculations that do not cross the tens boundary, until they are secure with the method. Then solve calculations that do cross the tens boundary. Use base 10 (diennes) to support the understanding of 'carrying' and the value of 'digits'
$20+3$
$+\frac{30+4}{50+7}$
57

$28+13$

solve problems with addition:

- using concrete objects and pictorial representations, including those involving numbers, quantities and measures
- applying increasing knowledge of mental and written methods

Use all the models and images mentioned above. Discuss which is most effective and why. \qquad record subtraction in columns

Introduce partitioned column method where no exchanging is required:

$$
\begin{aligned}
& 46-22=24 \\
& \begin{array}{r}
40+6 \\
-20+2 \\
\hline 20+4
\end{array}
\end{aligned}
$$

use base 10 (diennes) to support understanding

solve problems with subtraction

- using concrete objects and pictorial representations including those involving numbers, quantities and measures
applying increasing knowledge of mental and written methods
use all the models and images mentioned above. Discuss which is most effective and why. \qquad
recognise and use the inverse relationship between addition and subtraction and use this to solve missing number problems

$$
\begin{array}{ll|l|l}
\begin{array}{l}
\text { Missing numbers placed in } \\
\text { all possible places. }
\end{array} & \begin{array}{l}
\text { Number lines } \\
7+4=11 \quad 11-4=7
\end{array} & \begin{array}{l}
\text { As Year } 1 \text { and extend }+ \\
14+5=10+\square \\
7-3=\square
\end{array} & \square=4+3 \\
7-\square=4 & 7=\square+3 \\
\square-3=4 & 7=4+\square & +\quad . \quad \\
\square-\nabla=4 & 7=\square+\nabla & & \\
\text { and three numbers } \\
32+\square+\square=100 \\
35=46-7-7
\end{array}
$$

show that addition of two numbers can be done in any order (commutative)

On a number line
 56810

On a hundred square
show that subtraction of two numbers cannot be done in any order

On a number line \qquad $\square \int^{3.7 \neq 4}$ | +1 | 1 | 1 | 1 | 1 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 2 | 3 | 1 | 1 |

$12-38 \neq 26$
$38-12=26$

- 7-3=4

$\begin{array}{llllllllll}21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30\end{array}$
$\begin{array}{llllllllllll}1 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40\end{array}$ On a hundred square

extend their understanding of the language of subtraction to include difference
calculate mathematical statements for multiplication within the multiplication tables and write them using the multiplication (x) and equals ($=$) signs

$$
3 \times 4=12
$$

Repetition of sentence with different vocabulary:
" 3 times 4 equals 12"
" 3 lots of 4 are 12"
" 3 multiplied by 4 equals 12 "
"The product of 3 and 4 is 12 "
solve problems involving multiplication, using materials, arrays, repeated addition, mental methods, and multiplication facts, including problems in contexts

Use all the models and images mentioned above. Discuss which is most effective and why.
calculate mathematical statements for division within the multiplication tables and write them using the division (\div) and equals ($=$) signs

$$
12 \div 4=3
$$

Repetition of sentence with different vocabulary
"12 divided by 4 equals 3"
"12 shared by 4 is 3 "
"12 grouped into $4 s$ is 3 "
solve problems involving division, using materials, arrays, repeated addition, mental methods, and division facts, including problems in contexts

Use all the models and images mentioned above. Discuss which is most effective and why
recognise and use the inverse relationship between multiplication and division and use this to solve missing number problems
$3 \times 5=15$
00000
$15 \div 3=5$
$5 \times 3=15$
00000
00000
$15 \div 5=3$
show that multiplication of two numbers can be done in any order (commutative)
$12+26=3$
extend their understanding of the language of addition
to include sum
use a variety of language to describe multiplication
show that division of one number by another cannot be done in any order

subtract, subtraction, take (away), minus, leave, how many are , how many fewer is... than...? how much less is...? difference between, half, halve, tens boundary
$13+5=8$ Repetition of sentence with different vocabulary: "13 subtract 5 equals 8 " " 5 less than 13 is 8
" 13 take away 5 equals 8" "The difference between 13 and 5 is
count on (from, to), count back (from, to), count in ones, twos, threes, fours, fives... count in tens, lots of, groups of, x, times, multiply, multiplied by, multiple of, once, twice, three times... ten times... times as (big, long, wide... and so on), repeated addition, array, row, column, double, halve

Array, row, column, halve, share, share equally, one each, two each, three each... group in pairs, threes. tens, equal groups of, \div, divide, divided by, divided into, left, left over
= equals, sign, is the same as

Year 3

Number - addition and subtraction

add numbers mentally, including:

- a three-digit number and ones
- a three-digit number and tens
- a three-digit number and hundreds

Counting on	Adding near numbers and adjusting
115 + 2	$\begin{aligned} 433+90 & =433+100-10 \\ & =533-10 \end{aligned}$
"Put 115 in your head, 116, 117."	$=523$
Partition number and recombine	Count on by splitting units to make next multiple of ten/hundred
$\begin{aligned} 127+90 & =100+20+7+90 \\ & =100+110+7 \\ & =100+117 \end{aligned}$	$\begin{aligned} 360+80 & =360+40+40 \\ & =400+40 \\ & =440 \end{aligned}$

- two two-digit numbers (including answer crossing 100)

Counting on with number lines $\text { + } 48+36=84$	Partition both numbers and recombine $\begin{aligned} 27+82 & =20+7+80+2 \\ & =100+9 \\ & =109 \end{aligned}$
Add the nearest multiple of 10 , then adjust $63+59$ is the sameas $63+60-1$	Count on by partitioning the second number ony $\begin{aligned} 36+93 & =93+30+6 \\ & =123+6 \\ & =129 \end{aligned}$

stimate the answer to a calculation and use

inverse operations to check answers
Estimate answers before solving any calculation. Once inverse operation has been learnt use as a method for checking.
subtract numbers mentally, including

- a three-digit number and ones
- a three-digit number and tens
- a three-digit number and hundreds

Counting back: 263-5	Use unprepared numbered lines to subtract, by counting back:
"Put 263 in your head, 262, 261, 260, 259, 258."	$516-400=116$
Subtract mentally a 'near multiple of 10^{\prime} to or from a two-digit	116 216 316 416 516
number:	
$678-90=678-100+10$	$\begin{array}{lllll}-100 & -100 & -100 & -100\end{array}$

- two two-digit numbers (including answer crossing 100)

recall and use multiplication facts for the 3,4 and 8 multiplication tables

Play games, chant, test etc to increase speed of recalling facts.
Make models and images to display facts.
Investigate patterns within tables.
understand and use mental methods using
commutativity and associativity (for example, $4 \times$
$12 \times 5=4 \times 5 \times 12=20 \times 12=240$)
Use a variety of resources (including a calculator) to investigate order of multiplication. Make models and images to display facts
understand and use mental methods using multiplication a facts (e.g. using $3 \times 2=6,6 \div 3=2$ and $2=6$ $\div 3$) to derive related facts (e.g. $30 \times 2=60,60 \div 3=20$ and $20=60 \div 3$)

$$
\begin{array}{llll}
30 \times 5=150 & 50 \times 3=150 & 150 \div 5=30 & 150 \div 3=50 \\
3 \times 5=15 & \text { ○○○○○ } 15 \div 3=5 & \\
3 \times 50=150 & & \text { ○○○○○ } & \\
30 \div 30=5
\end{array}
$$

$5 \times 3=15$
○OOOO

$$
15 \div 5=3
$$

$5 \times 30=150 \quad 50 \times 30=1500$
$30 \times 50=1500$
$150 \div 50=3$
write and calculate mathematical statements for multiplication using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods
write and calculate mathematical statements for division using the multiplication tables that they know, including for two-digit numbers times onedigit numbers, using mental and progressing to formal written methods

			Use all the models and images mentioned above．Discuss which is most effective and why．
use a variety of language to describe addition	use a variety of language to describe subtraction	use a variety of language to describe multiplication	use a variety of language to describe division
＋，add，addition，more，plus，make，sum，total，altogether， score，double，near double，one more，two more．．．ten more．．．one hundred more，how many more to make．．．？how many more is．．．than．．．？how much more is．．．？ ＝equals，sign，is the same as tens boundary，hundreds boundary	－subtract，subtraction，take（away），minus，leave，how many are left／left over？one less，two less．．．ten less．．． one hundred less，how many fewer is．．．than．．．？how much less is．．．？difference between，half，halve，re－grouping ＝equals，sign，is the same as	count，count（up）to，count on（from，to），count back （from，to），count in ones，wos，threes，fours，fives．．．count in tens，hundreds，lots of，groups of，D，times，multiply， multiplication，multiplied by，multiple of，product，once， twice，three times．．．ten times．．．times as（big，long，wide．．． and so on），repeated addition，array，row，column $=$ equals，sign，is the same as	Array，row，column，halve，share，share equally，one each， two each，three each．．．group in pairs，threes．．．tens，equal groups of，\div ，divide，division，divided by，divided into， left，left over，remainder ＝equals，sign，is the same as

Year 4

Number－addition and subtraction
 Number－multiplication and division

add numbers mentally，includ －a four－digit number and one －a four－digit number and ten －a four－digit number and hu －a four－digit number and tho	reds sands
Counting on $3115+2$ ＂Put 3115 in your head，3116，3117．＂	Adding near numbers and adjusting $\begin{aligned} 7433+90 & =7433+100-10 \\ & =7533-10 \\ & =7523 \end{aligned}$
Partition number and recombine $\begin{aligned} 5127+ & 2000 \\ & =5000+100+20+7+2000 \\ & =7000+100+20+7 \\ & =7127 \end{aligned}$	Count on by splitting units to make next multiple of ten／hundred $\begin{aligned} 2360+500 & =2360+400+40+60 \\ & =2400+400+60 \\ & =2860 \end{aligned}$

－three and two－digit numbers

Partition both numbers into hundreds， tens and ones and recombine	Partition second number only into hundreds，tens and ones and recombine
$\begin{aligned} 358+73 & =300+50+8+70+3 \\ & =300+120+11 \\ & =420+11 \\ & =431 \end{aligned}$	$\begin{aligned} 358+73 & =358+70+3 \\ & =428+3 \\ & =431 \end{aligned}$
Partitioning with number lines	Add the nearest multiple of 10 or 100，then adjust $458+79=458+80-1$

subtract numbers mentally，including：
－a four－digit number and ones
－a four－digit number and tens
－a four－digit number and hundreds
－a four－digit number and thousands

Counting back：5263－5	Use unprepared numbered lines to subtract，by counting back：
＂Put 5263 in your head，5262， 5261,5260 5259，5258．＂	$1516-400=1116$
Subtract mentally a＇near multiple of 10 ＇to or from a two－digit	$\begin{array}{lllll}1116 & 1216 & 13161416 \quad 15\end{array}$
number：	欣令邤
$3678-90=3678-100+10$	$\begin{array}{lllll}-100 & -100 & -100 & -100\end{array}$

－three and two－digit numbers

Use known number facts and place value to subtract（partition second number only）	Find a small difference by counting u $\begin{gathered} 6003-5998=5 \\ +2 \end{gathered}$
$\begin{aligned} 437-12 & =437-10-2 \\ & =427-2 \end{aligned}$	

$\begin{aligned} 437-12 & =437-10-2 \\ & =427-2 \\ & =425\end{aligned}$

Subtract mentally a number near 10

30

recall multiplication facts for multiplication tables up to $12 \times$ recall division facts for multiplication $\left\lvert\, \begin{aligned} & \text { recall } \\ & 12\end{aligned}\right.$
play games，chant，test etc to increase speed of recalling facts．
Make models and images to display facts
Investigate patterns within tables．
use place value，known and derived facts to multiply mentally，including：multiplying by 0 and 1 ；multiplying ogether three numbers
practise and extend mental methods to three－digit number to derive facts，（for example $600 \div 3=200$ can be derived from $2 \times 3=6$ ）

Use knowledge of multiplication facts and place value to derive related facts．
$30 \times 5=150 \quad 50 \times 3=150-\quad-\quad, \quad 50=50$

partition
$18 \times 9=(10 \times 9)+(8 \times 9)$
$=90+72$

Play games，chant，test etc to increase speed of recalling facts．
Make models and images to display facts．
Investigate patterns within tables．
use place value，known and derived facts to divide mentally， including：dividing by 1 practise and extend mental methods to three－digit numbers to derive facts，（for example $600 \div$

$3=200$ can be derived from $2 \times 3=6$ ）

Use knowledge of multiplication facts and place value to derive related facts．

$30 \times 5=150$	$50 \times 3=150$		$150 \div 5=30$		$150 \div 3=50$
	$3 \times 5=15$	OO		$15 \div 3=5$	
$3 \times 50=150$		000			$150 \div 30=5$
	$5 \times 3=15$			$15 \div 5=3$	
$5 \times 30=150$	$50 \times 30=1500$		$30 \times 50=1500$		$150 \div 50=3$
Partitioning／Chunking					
$\begin{aligned} 77 \div 5 & =(50 \div 5)+(25 \div 5)+(\text { remainder } 2) \\ & =10+5+(\text { remainder } 2) \\ & =15 \text { remainder } 2 \end{aligned}$					

		recognise and use commutativity in mental calculations write statements about the equality of expressions (for example, use the distributive law $39 \times 7=30 \times 7+9 \times 7$ and associative law $(2 \times 3) \times 4=2 \times(3 \times 4))$ Use a variety of resources (including a calculator) to investigate order of multiplication. Make models and images to display facts.	recognise and use factor pairs in mental calculations Use a variety of resources (including a calculator) to investigate factor pairs. Make models and images to display facts.
add numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate (see Appendix 1) Column addition $\begin{array}{r} 2358 \\ +\quad 373 \\ \hline 2731 \\ \hline 11 \end{array}$ To ensure conceptual understanding, it is essential that place value is reinforced by frequently. Discussing the actual value of each digit, e.g. the 5 digit represents 5 hundreds. Use base 10 (Diennes) or place value counters to support understanding of carrying and to ensure conceptual understanding of place value (see year 2 and 3 for how to use these manipulatives). Including decimals $\begin{array}{r} 72.8 \\ +\quad 54.6 \\ \hline 127.4 \\ \hline 1 \end{array}$ To ensure conceptual understanding, it is essential that place value is reinforced by frequently discussing the actual value of each digit, e.g. the 2 digit represents 2 tens. Use money to support understanding.	subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate (see Appendix 1) Revision of partitioned column method from Year 3. Moving on to numbers with 4 digits: (use Diennes to support when required.) $\begin{array}{r} 2754-1562=1192 \\ 2000+700+50+4 \\ -1000+500+60+2 \\ \hline 1000+100+90+2 \end{array}$ Column Subtraction without decomposition $\begin{array}{r} 458 \\ -\quad 232 \\ \hline 226 \end{array}$ Column Subtraction with decomposition Once pupils are confident in exchanging and have a clear understanding of place value, move towards the formal compact column method: (use Diennes to support when required.) *When exchanging refer to the process as 're-grouping'	multiply two-digit and three-digit numbers by a one-digit number using formal written layout (see Appendix 1) Grid method 231×7 is approximately $200 \times 10=2000$$231 \times 7=1617$$x$ 7 200 1400 30 210 1 7 1617 move onto formal method of short multiplication when proficient $\begin{array}{r} 452 \\ \times \quad 3 \\ \hline 1356 \\ \hline 1 \end{array}$	divide numbers up to 3 digit by a one-digit number using the formal written method of short division and begin to interpret remainders. Short division with no remainders in the final answer, use place value counters/Diennes where support is required. Remainders Begin to interpret remainders by looking at word problems to give context and small numbers to start with. Cars carry 5 people. !2 people are going on a trip. How many cars will they need? $12 \div 5=2 r 2$ So they would need 3 cars. 5 buttons are packed in a bag. How many full bags would there be if there were 12 buttons? $12 \div 5=2 r 2$. So there are 2 full bags.

solve addition two-step problems in contexts, deciding which operations and methods to use and why

Use all the models and images mentioned above. Discuss which is most effective and why.

estimate and use inverse operations to check answers to a calculation

Estimate answers before solving any calculation. Once inverse operation has been learnt use as a method for checking.
use a variety of language to describe addition

+ add, addition, more, plus, increase, sum, total, altogether, score, double, near double, how many more to make...? tens boundary, hundreds boundary, inverse
= equals, sign, is the same as
solve subtraction two-step problems in contexts, deciding which operations and methods to use and why

Use all the models and images mentioned above. Discuss which is most effective and why.
estimate and use inverse operations to check answers to a calculation

Estimate answers before solving any calculation. Once inverse operation has been learnt use as a method for checking
use a variety of language to describe subtraction
subtract, subtraction, take (away), minus, decrease, leave, how many are left/left over? difference between, half, halve, how many more/fewer is... than...? how much more/less is...? tens boundary, hundreds boundary, inverse, regrouping
e equals, sign, is the same as
solve problems involving multiplying and adding including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects solve two-step problems in contexts, choosing the appropriate operation, working with increasingly harder numbers

Use all the models and images mentioned above. Discuss which is most effective and why
estimate and use inverse operations to check answers to a calculation

Estimate answers before solving any calculation Once inverse operation has been learnt use as a method for checking
use a variety of language to describe multiplication
times, multiply, multiplication, multiplied by, multiple of, product
once, twice, three times... ten times... times as (big, long, wide... and so on)
repeated addition array, row, column, double inverse
= equals, sign, is the same as
solve two-step problems in contexts, choosing the appropriate operation, working with increasingly harder numbers

Use all the models and images mentioned above Discuss which is most effective and why.

estimate and use inverse operations to check

 answers to a calculationEstimate answers before solving any calculation Once inverse operation has been learnt use as a method for checking. use a variety of language to describe division

Array, row, column, halve, share, share equally, one each, two each, three each.
group in pairs, threes... tens. equal groups of, divide, division, divided by, divided into remainder, factor, quotient, divisible by, inverse
= equals, sign, is the same as

Year 5
add numbers mentally with increasingly large numbers (\quad subtract numbers mentally with increasingly large e.g. $12462-2300=10162$)
numbers (e g. $12462-2300=10162$)

Number - multiplication and division	
multiply numbers mentally drawing upon known facts	
Partition	
$47 \times 6=(40 \times 6)+(7 \times 6)$ $=(240)+(42)$ $=282$	
divide numbers mentally drawing upon known facts	
Double and halve $25 \times 16=50 \times 8=100 \times 4=200 \times 2=400$	
Partitioning multiply whole numbers and those involving decimals by 10,100 and 1000 Place Value	

Partition both numbers and recombine
$2358+773$
$=2000+300+50+8+700+70+3$
$=2000+1000+120+11$
$=3000+100+30+1$
$=3131$
Partitioning with number lines
+700

Partition second number only into
undreds, tens and ones and recombine
$\begin{aligned} 2358+773 & =2358+700+70+3 \\ & =3058+70+3 \\ & =3128+3 \\ & =3131\end{aligned}$
Add the nearest multiple of 10 or
100, then adjust
$458+79=458+80-1$
add numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction - see Appendix 1)

Subtract the nearest multiple of 10 or
100, then adjust

$$
\begin{aligned}
458-79 & =458-80+1 \\
& =378+1 \\
& =379
\end{aligned}
$$

Find a difference by counting up
8006-2993: 5013

Use known number facts and
place value to subtract (partition second number only)

12 462-2300
$=12462-2000-300$
$=10462-300$
$=10162$

历 H JU. t \boldsymbol{H} th

$\times 1000$

identify multiples, (and use them to construct

equivalence statements, e.g. $4 \times 35=2 \times 2 \times 35 ; 3 \times 270$
$=3 \times 3 \times 9 \times 10=9^{2} \times 10$)
Use a variety of resources (including a calculator) to investigate multiples. Make models and images to display facts.

recall prime numbers up to 19
 establish whether a number up to 100 is prime

Play games, chant, test etc to increase speed of recalling facts.
Make models and images to display facts.
Investigate patterns within primes.
recognise and use square numbers and cube numbers, and the notation for squared $\left(^{2}\right)$ and cubed $\left(^{3}\right)$
Use a variety of resources (including a calculator) to
investigate square and cubed numbers. Make models and mages to display facts.
Investigate the patterns within squared and cubed numbers.
multiply numbers up to 4 digits by a one- or twodigit number using a formal written method, including long multiplication for two-digit numbers
identify factors, including finding all factor pairs of a number, and common factors of two numbers (and use them to construct equivalence statements, e.g. $4 \times 35=$ $2 \times 2 \times 35 ; 3 \times 270=3 \times 3 \times 9 \times 10=9^{2} \times 10$)

Use a variety of resources (including a calculator) to investigate factors. Make models and images to display facts.
recall prime numbers up to 19
establish whether a number up to 100 is prime
Play games, chant, test etc to increase speed of recalling facts.
Make models and images to display facts.
Investigate patterns within primes.
d
divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context (as fractions, as decimals or by rounding (for example, $98 \div 4=98 / 4=24 r 2=$ $24 \frac{1}{2}=24.5 \approx 25$)

Column addition

$$
\begin{aligned}
& 124.90 \\
&+\frac{117.25}{242.15} \text { (add in a zero to keep } \\
& \text { the place value) }
\end{aligned}
$$

To ensure conceptual understanding, it is essential that place value is reinforced by frequently.
Discuss the value of each digit.
Use base 10 (Diennes) to support understanding of exchanging and to ensure conceptual understanding of place value.
Where there is an 'empty' space in a decimal column, pupils should insert a zero to show the value.
Children should be made aware that it is essential to align the columns carefully

Pupils should be able	3.25
to add more than 2	+4.13
numbers using the	$\underline{0.76}$
compact column method.	$\underline{8.14}$

method. $\frac{8.14}{11}$
solve addition multi-step problems in contexts, deciding which operations and methods to use and why

Use all the models and images mentioned above. Discuss which is most effective and why.

se rounding to check answers to calculations and

determine in the context of a problem, levels of accuracy

Estimate answers before solving any calculation.
Check against estimate after calculating (and use inverse check).

Revision of formal compact colum

$\begin{array}{l}\text { method extending to calculations } \\ \text { involving numbers with more than } \\ \text { digits (use Diennes to support }\end{array}$
$\begin{array}{l}\text { understanding of decomposition }\end{array}$
$\begin{array}{l}2 \\ \text { und }\end{array}$

When confident in using formal compact column method with integers and decimals involving money (always 2 decimal places), extend to subtraction with mixtures of integers and decimals. A clear understanding of place value is essential. Align the decimal point and use 'place holders', if needed.
$\begin{aligned} & \text { - } / 1 \ldots 1 \begin{array}{l}\text { Use Diennes or place value } \\ 263.0\end{array} \\ & \text { counters (add counters with 0.1) to } \\ & 26.5 \text { support understanding of }\end{aligned}$ 236.5
*When exchanging refer to the process as 're-grouping'
solve subtraction multi-step problems in contexts, deciding which operations and methods to use and why

Use all the models and images mentioned above. Discuss which is most effective and why.

use rounding to check answers to calculations and

determine in the context of a problem, levels of accuracy

Estimate answers before solving any calculation
Check against estimate after calculating (and use inverse check).

Review formal method of short multiplication (for multiplying by one digit numbers) when proficient

452
$\times \quad 3$
1356
14
---:

Start with grid method when multiplying by 2 digit numbers
72×38 is approximately $70 \times 40=2800$

$\begin{array}{r}2160 \\ 576\end{array}+$ $\frac{2736}{1}$

Move onto formal
Then formal multiplication long multiplication with more complex numbers:

34
$\times 13$
102
1
440
442

Solve problems that use multiplication and division as inverses, for example, by multiplying and dividing by powers of 10 in scale drawings or by multiplying and dividing by powers of a 1000 in converting between units such as kilometres and metres

Use all the models and images mentioned above. Discuss which is most effective and why.
use and explain the equals sign to indicate equivalence, including missing number problems (e.9, 13+24 = 12+25; $33=5 x[]$)
express distributivity, for example $a s a(b+c)=a b+a c$
Use all of the models and images above to investigate a range of statements, ensuring the equals sign is in different positions. Allow time for discussion and reasoning. Display solutions and reasoning. Also use errors or misconceptions as a starting point

use rounding to check answers to calculations and

determine, in the context of a problem, levels of accuracy

Estimate answers before solving any calculation
Check against estimate after calculating (and use inverse check).

Bus shelter method (short division)

\section*{86 r 2
 5 | $43^{3} 2$ |
| :---: |
| 114.25 |
| $45^{1} 7^{.1} 00$ |}

Pupils should consider whether remainders should be left as a reminder, rounded to the nearest whole or converted into a decimal or fraction.

Introduce long division (dividing by single digits)
$256 \div 7$ lies between $210 \div 7=30$ and $280 \div 7=40$

$$
\begin{aligned}
& 256 \\
&-\frac{70}{186} \text { (10 groups) } \\
& \text { or }(10 \times 7) \\
& \frac{140}{46} \text { (20 groups) or }(20 \times 7) \\
&-\frac{42}{4} \frac{(6 \text { groups })}{(36 \text { groups }) \text { or }(3 \times 7)}(36)
\end{aligned}
$$

Answer: 36 remainder 4
Solve problems that use multiplication and division as inverses, for example, by multiplying and dividing by powers of 10 in scale drawings or by multiplying and dividing by powers of a 1000 in converting between units such as kilometres and metres

Use all the models and images mentioned above. Discuss which is most effective and why
use and explain the equals sign to indicate equivalence, including missing number problems (e.g, 13+24=12+25 $33=5 \times[]$)

Use all of the models and images above to investigate a range of statements, ensuring the equals sign is in different positions. Allow time for discussion and reasoning. Display solutions and reasoning. Also use errors or misconceptions as a starting point

use rounding to check answers to calculations and

determine, in the context of a problem, levels of accuracy

Estimate answers before solving any calculation.
Check against estimate after calculating (and use inverse

use a variety of language to describe addition

+ add, addition, more, plus, increase, sum, total,
altogether, score, double, near double, how many more to make...? tens boundary, hundreds boundary, units boundary, tenths boundary, inverse
equals, sign, is the same as
use a variety of language to describe subtraction
- subtract, subtraction, take (away), minus, decrease, leave, how many are left/left over? difference between half, halve, how many more/fewer is... than...? how much more/less is...? tens boundary, hundreds boundary, units boundary, tenths boundary, inverse, re-grouping
use a variety of language to describe multiplication know and use the vocabulary of prime numbers, prime factors and composite (nonprime) numbers
lots of, groups of, times, multiply, multiplication, multiplied by, multiple of, product, once, twice, three times... ten times... times as (big, long, wide... and so on), repeated addition, array, row, column, double,, inverse, prime,
equals, sign, is the same as
use a variety of language to describe division
Array, row, column, halve, share, share equally one each, two each three each
group in pairs, threes... tens, equal groups of, divide division, divided by, divided into, remainder, factor, quotient, divisible by, inverse. Prime, factors

Number - addition and subtraction

perform mental calculations, including with mixed operations and large numbers (and decimals)

Partition both numbers into hundreds, tens, ones and decimal fractions and recombine
$35.8+7.3=30+5+0.8+7+0.3$

$$
=30+12+1.1
$$

$=42+1.1$
$=43.1$
Partition second number only into hundreds, tens, ones and decimal fractions and recombine
$35.8+7.3=35.8+7+0.3$
$=42.8+0.3$
$=43.1$
Add the nearest whole number then adjust $52+11.9=52+12-0.1$
$=64-0.1$
$=63.9$
perform mental calculations, including with mixed operations and large numbers(and decimals)

Use known number facts and place value to subtract $6.1-2.4=3.7$
3.7
4.1

Subtract the nearest whole number then adjust
$52-11.9=52-12+0.1$
$=40+0.1$
$=40.1$

Number - multiplication and division

perform mental calculations, including with mixed

 operations and large numbers(and decimals) Partitioning$$
\begin{aligned}
4.7 \times 6 & =(4 \times 6)+(0.7 \times 6) \\
& =(24)+(4.2)
\end{aligned}
$$

perform mental calculations, including with mixed operations and large numbers(and decimals)

Partitioning

$$
=28.2
$$

$$
\begin{aligned}
7.2 \div 3 & =(6 \div 3)=(1.2 \div 3) \\
& =2+0.4 \\
& =2.4
\end{aligned}
$$

Double and halve

$$
\begin{aligned}
& 4.25 \times 32= \\
& 8.5 \times 16 \\
&=17 \times 8 \\
&=34 \times 4 \\
&=68 \times 2 \\
&=136
\end{aligned}
$$

identify common factors, common multiples and prime numbers

Use a variety of resources (including a calculator) to investigate common factors, common multiples and prime numbers. Make models and images to display facts. Investigate the patterns within the numbers.
identify common factors, common multiples and prime numbers

Use a variety of resources (including a calculator) to investigate common factors, common multiples and prime numbers. Make models and images to display facts. Investigate the patterns within the numbers.
practise addition for larger numbers, using the formal written methods of columnar addition (see Appendix 1)

Extend the use of compact column method to adding several numbers with_mixed decimals.

Children should be reminded of the importance of aligning the columns accurately.

Where there is an 'empty' space in a decimal column, pupils could insert a zero to show the value.

solve addition multi-step problems in contexts

deciding which operations and methods to use and why

Use all the models and images mentioned above. Discuss which is most effective and why. round answers to a specified degree of accuracy, e.g. to the nearest $10,20,50$ etc., but not to a specified number of significant figures

Use knowledge of rounding (see fraction Policy) to create estimates.
use their knowledge of the order of operations to carry out calculations involving the four operations
explore the order of operations using brackets;
for example, $2+1 \times 3=5$ and $(2+1) \times 3=9$
practise subtraction for larger numbers, using the formal written methods of columnar subtraction (see Appendix 1)

Column Subtraction with decomposition

6141	8.26	
$-\frac{286}{468}$	$-\frac{1.17}{7.19}$	Including
-		

Revision of formal compact column method extending to more complex integers and applying to problem solving using money and measures, including decimals with different numbers of decimal places. Align the decimal point when setting out calculations.
Use 'place holders' to aid understanding of the value in that column.

solve subtraction multi-step problems in contexts deciding which operations and methods to use and why

Use all the models and images mentioned above. Discuss which is most effective and why. round answers to a specified degree of accuracy, e.g. to the nearest $10,20,50$ etc., but not to a specified number of significant figures

Use knowledge of rounding (see fraction Policy) to create estimates.
use their knowledge of the order of operations to carry out calculations involving the four operations
explore the order of operations using brackets; for example, $2+1 \times 3=5$ and $(2+1) \times 3=9$
multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of short and long multiplication (Appendix 1)

Short multiplication and Long multiplication as in Year 5, but apply to numbers with decimals.

$3 \cdot$
28
25

Pupils may need reminding that single digits belong in the ones (units) column.
A sound understanding of place value and the formal method itself are required before progressing to decimal multiplication.

solve problems involving multiplication
 Use all the models and images mentioned above. Discuss which is most effective and why.

round answers to a specified degree of accuracy, for example, to the nearest 10, 20, 50 etc., (not to specified number of significant figures)

Use knowledge of rounding (see fraction Policy) to create estimates.
use their knowledge of the order of operations to carry out calculations involving the four operations
explore the order of operations using brackets; for example, $2+1 \times 3=5$ and $(2+1) \times 3=9$
divide numbers up to 4 digits by a two-digit whole number using the formal written method of short and long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context

(Appendix 1)

Short division

Short division
$98 \div 7$ becomes
14
$79^{2} 8$
$42 \div 5$ becomes
$58^{8 \quad r^{3}}{ }^{\text {r2 }}$

Answer 14
$1 1 \longdiv { 4 } 9 ^ { 5 } 6$

Answer: $45 \frac{1}{11}$
Long division (for dividing by 2 digits) Long division

		2	8
1	54	3	2
	3	0	0
	1	3	2
	1	2	0
		1	

$432 \div 15$ become
28.8

3	0	
1	3	2

132
$\begin{array}{rlr}12 & 0 \\ 12 & \\ 1 & 0\end{array}$
120
Answer: 28.8
Remainders: Quotients expressed as fractions or decimal fractions $61 \div 4=15 \frac{1}{4}$ or 15.25 solve problems involving division

Use all the models and images mentioned above Discuss which is most effective and why.
round answers to a specified degree of accuracy, e.g. to the nearest $10,20,50$ etc., but not to a specified number of significant figures

Use knowledge of rounding (see fraction Policy) to create estimates
use their knowledge of the order of operations to carry out calculations involving the four operations
explore the order of operations using brackets; for example, $2+1 \times 3=5$ and $(2+1) \times 3=9$

Review and investigate the effect of carrying out operations in different orders. Explore the effect.
Introduce and use BODMAS to solve calculations.

use estimation to check answers to calculations

 and determine, in the context of a problem, an appropriate degree of accuracyEstimate answers before solving any calculation. Check against estimate after calculating (and use inverse check)

use a variety of language to describe subtraction

+ add, addition, more, plus, increase, sum, total, altogether, score, double, near double, how many more to make...? tens boundary, hundreds boundary, units boundary, tenths boundary, inverse
= equals, sign, is the same as

Review and investigate the effect of carrying out operations in different orders. Explore the effect
Introduce and use BODMAS to solve calculations.

use estimation to check answers to calculations

 and determine, in the context of a problem, an appropriate degree of accuracyEstimate answers before solving any calculation. Check against estimate after calculating (and use inverse check)

use a variety of language to describe subtraction

subtract, subtraction, take (away), minus, decrease, leave, how many are left/left over? difference between, half, halve, how many more/fewer is... than...? how much more/less is...? tens boundary, hundreds boundary, units boundary, tenths boundary, re-grouping, inverse
equals, sign, is the same a

Review and investigate the effect of carrying out operations in different orders. Explore the effect
Introduce and use BODMAS to solve calculations.

use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy

Estimate answers before solving any calculation Check against estimate after calculating (and use inverse check).

use a variety of language to describe subtraction

\times lots of, groups of, times, multiply, multiplication multiplied by, multiple of, product, once, twice, three times... ten times... times as (big, long, wide... and so on), repeated addition, array, row column
double, inverse
= equals, sign, is the same as

Review and investigate the effect of carrying out operations in different orders. Explore the effect
Introduce and use BODMAS to solve calculations.

use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy

Estimate answers before solving any calculation. Check against estimate after calculating (and use inverse check).
use a variety of language to describe subtraction

Array, row, column, halve, share, share equally one each, two each, three each... group in pairs,
threes... tens, equal groups of, divide, division divided by, divided into, remainder, factor, quotient, divisible by, inverse
$=$ equals, sign, is the same as

